WEST VIRGINIA UNIVERSITY
College of Engineering and Mineral Resources
Lane Department of Computer Science and Electrical Engineering

SENG 691A-71D Cloud Computing and the Internet of Things
3 credit hours, Summer 2016

Class time: Once a week 6:00 pm – 8:20 pm Location: WVU eCampus, https://ecampus.wvu.edu/

Instructor: Prof. Hany Ammar
Office: 246 Advanced Engineering Research Building
Office phone: 304-293-9682, cell: 304-282-4213
E-mail: hany.ammar@mail.wvu.edu, Skype: hanyammar,
URL: http://www.csee.wvu.edu/~ammar/

Office hours: By appointment.

Prerequisites: SENG 550 or knowledge of Object-Oriented Programming and Design, and an undergraduate level knowledge of software engineering.

Course Materials: Course slides will be based on the following references

References:

2. Engineering Software as a Service: An Agile Approach Using Cloud Computing, by Armando Fox, David Patterson, Publisher: Strawberry Canyon LLC, 2014

12. The dirty dozen: 12 cloud security threats

13. Google Cloud Platform Security
https://cloud.google.com/security/

Suggested Links for Project Ideas:

2. Cloud Application Modeling
 CAML https://code.google.com/archive/a/eclipselabs.org/p/caml
16. Make: Wearable Electronics: Design, prototype, and wear your own interactive garments, by Kate Hartman
17. On the Integration of Cloud Computing and Internet of Things: Review the literature about the integration of Cloud and IoT.
Method of instruction: Lecture. Offered online.

Course Description: This course investigates cloud computing and the Internet of Things (IoT) techniques, and architectures. Students will be exposed to the basic concepts and current practices of cloud computing. Topics include distributed computing models and technologies, Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), Software-as-a-Service (SaaS), virtualization, security and privacy issues. The course addresses example applications of IoT which is based several technologies and research disciplines that enable the Internet to reach out into the real world of physical objects. Technologies such as RFID, short range wireless communications, real-time localization, and sensor networks are becoming increasingly pervasive, making the IoT a reality with applications in smart homes, smart cities, smart healthcare, and wearable devices. Course work will include student presentations, and a term project that will provide exposure to scientific research in cloud computing and IoT.

Course Modules:

1. Introduction to Cloud Computing and IoT [1 week]
2. Virtual Machines and Virtualization of Clusters and Data Centers [1 week]
3. Cloud Platform Architecture [1 week]
4. Cloud Computing Applications Architecture Styles and Patterns [1 week]
5. Cloud Programming and Software Environments [2 week]
6. Security and Privacy issues in the Cloud [1 week]
7. Ubiquitous Clouds and the Internet of Things and their applications [2 weeks]
8. Project Presentations and Term Exam [2 weeks]

Course Learning Outcomes: Upon successful completion of SENG 650, students will be able to

1. Demonstrate knowledge of the basic concepts and technologies of Cloud Computing and IoT
2. Analyze and compare cloud computing architectures
3. Compare the Software Engineering Environments for developing cloud computing and IoT applications
4. Conduct studies on the use of cloud computing and IoT technologies in various application domains.

RULES OF OPERATION

Attendance: Students are expected to regularly follow the lectures. Students are responsible for all material covered in the course, keeping track of assignments’ due dates and examination date. Students are required to attend the in-class discussions of assignments.

Communication: All course material, important announcements, assignments, etc. will be provided using the eCampus features. Please use the eCampus Course Messages feature to communicate with the Instructor and other students in the class. The instructor will make her best effort to respond within 24 hours.

Paper: will be required to submit project briefing presentations, final project presentation, and project final report using eCampus.

Exams: There will be a term exam which will cover class material and will be administered in the last week of classes.
Term project: Each student will conduct a multi-stage term project which will be based on the methods discussed in class. The project will have the following four stages: (1) Choosing a topic from the provided list and compiling the related work section and bibliography, (2) Project Plan describing the tasks and timelines, (3) Project Briefings presentations in class, (4) Final project presentation, and (5) Final report.

Grading: Semester grades will be computed as follows

<table>
<thead>
<tr>
<th>Assignment/exam</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term exam</td>
<td>25%</td>
</tr>
<tr>
<td>Assignments & Project</td>
<td>75%</td>
</tr>
<tr>
<td>Assignment 1: Project Proposal</td>
<td>(10%)</td>
</tr>
<tr>
<td>Assignment 2: Project Plan</td>
<td>(10%)</td>
</tr>
<tr>
<td>Assignment 3: 1st iteration doc</td>
<td></td>
</tr>
<tr>
<td>Assignment 4: 2nd iteration doc</td>
<td></td>
</tr>
<tr>
<td>Assignment 5: 3rd iteration doc</td>
<td></td>
</tr>
<tr>
<td>Assignment 6: 4th iteration doc</td>
<td></td>
</tr>
<tr>
<td>Assignment 7: 5th iteration doc</td>
<td></td>
</tr>
<tr>
<td>Final Project Presentation</td>
<td>(15%)</td>
</tr>
<tr>
<td>Final Report</td>
<td>(15%)</td>
</tr>
</tbody>
</table>

Class total 100%

Grading scale: Grades will generally be A = 90 – 100%, B = 80 - 89%, C = 70 - 79%, D = 60 - 69%, and F = 0 – 59%. ‘+’ and ‘-‘ grade may be reported if the score is near boundary.

<table>
<thead>
<tr>
<th>Modules</th>
<th>Course Level Objectives</th>
<th>Module Level Objectives</th>
<th>Assignments</th>
<th>Tentative Activities (To do List)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Cloud Computing and IoT</td>
<td>Course Learning Objective 1</td>
<td>Define key concepts and enabling technologies of Cloud Computing and IoT</td>
<td>Assignment 1</td>
<td>Read Chapters 1&2 of Ref. 1</td>
</tr>
<tr>
<td>Virtual Machines and Virtualization</td>
<td>Course Learning Objective 1</td>
<td>Define the concept of Virtualization and its different levels</td>
<td>Assignment 2</td>
<td>Read Ch. 3 of Ref 1</td>
</tr>
<tr>
<td>Course Learning Objectives</td>
</tr>
<tr>
<td>----------------------------</td>
<td>----------------------------</td>
<td>----------------------------</td>
<td>----------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>of Clusters and Data Centers</td>
<td>Relate Virtualization concepts to cloud computing and IoT</td>
<td>Discussion & Project Briefing 2</td>
<td>Cloud Platform Architectures</td>
<td>Demonstrate knowledge of the different Cloud Service Models</td>
</tr>
<tr>
<td>Cloud Computing Applications Architecture Styles and Patterns</td>
<td>Demonstrate knowledge of specific Platform Architectures</td>
<td>Assignment 3 Discussion & Project Briefing 3</td>
<td>Cloud Computing Applications Architecture Styles and Patterns</td>
<td>Demonstrate knowledge of specific Cloud Computing Application Architecture Styles and Design Patterns</td>
</tr>
<tr>
<td>Cloud & IoT Programming and Software Environments</td>
<td>Demonstrate knowledge of specific Programming and Software Environments for cloud and IoT Applications development</td>
<td>Assignment 5 Discussion & Project Briefing 5</td>
<td>Security and Privacy issues in the Cloud</td>
<td>Demonstrate knowledge of specific Cloud of Cloud Security threats and techniques</td>
</tr>
<tr>
<td>Ubiquitous Clouds and the Internet of Things and their applications</td>
<td>Demonstrate knowledge of the relation between Cloud Computing and IoT application domains</td>
<td>Assignment 7 Discussion & Project Briefing 7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Term Examination: The examination is designed to gauge the student’s understanding of topics covered in assigned readings, lectures, and project assignments. The final will be comprehensive. The primary focus will be on all the course material. The ‘take home’ exam will be in essay format and students will be given one week to complete the final examination. The Final Exam Rubric will be provided on the exam and discussed in class during the review.

Academic Integrity: Students who practice academic dishonesty, such as cheating or plagiarism, will be penalized. Severe penalties will follow from the discovery of any representation of another individual’s work (in any form) as your own (i.e., copying any portion of written assignments or exams). Check the *MLA Handbook for Writers of Research Papers Seventh Edition* (ISBN: 9781603290241) for proper
citation of others’ work to avoid plagiarism in written assignments. Penalties range from a grade of “zero” on the assignment in question to an “unforgivable F” in the course.

If you have not already done so please go to the website http://www.libraries.wvu.edu/instruction/plagiarism and sign-in as WVU Students-First Time. Use your MyID username and password and complete the Tutorial & Take the Test. Please e-mail your certificate for the test to the Software Engineering Program Coordinator, Dale.Dzielski@mail.wvu.edu. Please refer to the New Student Orientation Manual for Online Courses at http://elearn.wvu.edu/students/images/NewStudentOrientationManual_101910.pdf. The document provides information on eCampus, Mix, STAR, Help Desk, refund policy, WVU Bookstore and important phone numbers.

Attendance Policy: Students are expected to attend every class. Archives are made available to review if missed due to personal or work related absence that should be communicated with instructor when possible. Consistent with WVU guidelines, students absent from regularly scheduled examinations because of authorized University activities will have the opportunity to take them at an alternate time. Make-up exams for absences due to any other reason will be at the discretion of the instructor.

Inclusivity Statement: The West Virginia University community is committed to creating and fostering a positive learning and working environment based on open communication, mutual respect, and inclusion. If you are a person with a disability and anticipate needing any type of accommodation in order to participate in this class, please advise me and make appropriate arrangements with the Office of Accessibility Services (URL http://accessibilityservices.wvu.edu/home; Phone 304 293-6700). For more information on West Virginia University’s Diversity, Equity, and Inclusion initiatives, please see http://diversity.wvu.edu.