WEST VIRGINIA UNIVERSITY
College of Engineering and Mineral Resources
Lane Department of Computer Science and Electrical Engineering

SENG 670 Data Analytics with Applications in Software Engineering
3 credit hours
Fall 2019

Class time: Thursday 6:00 pm – 8:20 pm
Location: WVU eCampus, https://ecampus.wvu.edu/

Instructor: Dr. Katerina Goseva – Popstojanova
Office: 261 Advanced Engineering Research Building
Office phone: 304-293-9691
E-mail: Katerina.Goseva@mail.wvu.edu
URL: http://community.wvu.edu/~kagoseva/

Office hours: By appointment.

Prerequisites: STAT 215 and SENG 520 or Instructor Consent.

Course Materials:
• Textbooks:
• Papers published in journals and conference proceedings.

Method of instruction: Lecture. Offered online.

Catalog Description: Foundation of data science, with focus on applications in software engineering. Different empirical methods such as surveys, case studies, and experiments. Threats to validity. Methods for data preparation. Statistics for data understanding and assessment. Commonly used supervised and unsupervised machine learning algorithms.

Course Description: This course addresses the emerging field of data science, with focus on applications in software engineering. It describes the scientific process and guidelines for empirical studies, particularly addressing different methods such as surveys, case studies, and experiments. The course also covers methods for data preparation, statistics that support data understanding and assessment, and commonly used machine learning algorithms. Students’ learning will be evaluated using multiple means, including critical analysis of published data analytics studies applied to automated software engineering, an exam, and a multi-stage term project, which incorporates application of methods discussed in class.

Course Learning Outcomes: Upon successful completion of SENG 670, students will be able to
• Demonstrate knowledge of the main empirical methods (i.e., surveys, case studies, and experiments) and threats to validity
• Critically analyze and evaluate data analytics studies
• Apply different data analytics methods
• Conduct data analytics studies and analyze, interpret, and report the results.

Class Schedule:
• Introduction to data-driven software engineering [1week]
• Types of empirical studies: Surveys, case studies, and experiments [2 weeks]
• Types of threats to validity: Construct, internal, conclusion, and external validity [1 weeks]
• Data understanding & assessment: Measures of centrality, spread and association; hypotheses testing [1 weeks]
• Data preparation: Variable cleaning & feature creation [1 week]
• Supervised learning: Decision trees, Naïve Bayes, k-Nearest Neighbors [3 weeks]
• Supervised learning: Linear regression, Multivariate linear regression, Logistic regression [2 weeks]
• Unsupervised learning: k-means clustering, Expectation-Maximization clustering, Hierarchical clustering [2 weeks]
• Students’ term paper presentations [2 weeks]
Homework assignments: As a part of homework assignments students will be required to critically analyze and provide recommendations for improvement of several published papers presenting data analytics studies. Homework assignments will typically consist of (1) written reports due at the latest by the beginning of the class, the day it is due, (2) in-class discussion, and (3) discussion forum postings. Late written reports will not be allowed. Students who cannot attend an in-class discussion due to an excused absence will be required to submit a recorded briefing in eCampus.

Exams: There will be a midterm exam which will cover the first 7-8 weeks of classes.

Term project: Each student will conduct a multi-stage data analytics term project which will be based on the methods discussed in class. The project will have the following four stages: (1) Choosing a topic from the provided list and compiling the related work section and bibliography, (2) Data preparation and understanding, including data analytics for assessment, (3) Using data analytics for prediction, and (4) Term project presentation. Each student will write a term paper that will summarize the results (stages 1-3) and give a presentation (stage 4).

Grading: Semester grades will be computed as follows

<table>
<thead>
<tr>
<th>Assignment/exam</th>
<th>Points %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework assignments</td>
<td>30%</td>
</tr>
<tr>
<td>Homework 1 (10%)</td>
<td></td>
</tr>
<tr>
<td>Homework 2 (10%)</td>
<td></td>
</tr>
<tr>
<td>Homework 3 (10%)</td>
<td></td>
</tr>
<tr>
<td>Midterm exam</td>
<td>25%</td>
</tr>
<tr>
<td>Project</td>
<td>45%</td>
</tr>
<tr>
<td>Stage 1: Select a topic, write introduction & related work, include bibliography (10%)</td>
<td></td>
</tr>
<tr>
<td>Stage 2: Data preparation & understanding, assessment (10%)</td>
<td></td>
</tr>
<tr>
<td>Stage 3: Data analytics for prediction (15%)</td>
<td></td>
</tr>
<tr>
<td>Stage 4: Presentation (10%)</td>
<td></td>
</tr>
<tr>
<td>Class total</td>
<td>100%</td>
</tr>
</tbody>
</table>

Grading scale: Grades will generally be A = 90 – 100%, B = 80 - 89%, C = 70 - 79%, D = 60 - 69%, and F = 0 – 59%. ‘+’ and ‘-’ grade may be reported if the score is near boundary.

RULES OF OPERATION

Attendance: Students are expected to regularly follow the lectures. Students are responsible for all material covered in the course, keeping track of assignments’ due dates and examination dates. Students are required to attend the in-class discussions of homework assignments. An excused absence from an in-class homework discussion may be made up by submitting a recorded briefing. Students should make every effort to give prior notice of an excused absence and arrange the recording of the make-up briefing with the instructor.

Communication: All course material, important announcements, assignments, etc. will be provided using the eCampus features. Please use the eCampus Course Messages feature to communicate with the Instructor and other students in the class. The instructor will make her best effort to respond within 24 hours.

Grading policies:
- No late homework assignments will be allowed (i.e., a late assignment equals no assignment).
- Late project deliverables are strongly discouraged and will be penalized 10% for each day late.
- Make-up exam will be given only by prior arrangement and only under truly extraordinary circumstances. Consistent with WVU guidelines, students absent from regularly scheduled examinations because of authorized University activities will have the opportunity to take them at an alternate time.
- Grading appeals must be in writing on the day the assignment or exam is returned.
- Every attempt will be made to grade the assignments and provide feedback to the students within the same length of time the students have been given to complete the assignment (e.g., if the students are given one week to complete a homework assignment, the instructor will attempt to provide the grade within one week after the homework has been turned-in). The exam will typically be graded within one week.

Academic Policies and Syllabus Statements (including the Academic Integrity Statement and Inclusivity Statement) can be found at https://tlcommons.wvu.edu/syllabus-policies-and-statements.